谈 鹏

发布者:webmaster发布时间:2017-06-16浏览次数:7674


谈鹏,男,1990年生,博士学位,中科院“百人计划(C类)”入选者,特任研究员。主要从事新型电池系统(离子电池金属空气电池等)前沿课题的相关研究,包括高性能电池材料的发,传质传热与能量传输机理与特性的研究新型电池结构的设计与优化等。Energy & Environmental ScienceProgress in Energy and Combustion ScienceAdvanced Energy Materials等能源与热科学领域权威期刊发表SCI学术论文50,引用680余次,授权发明专利7项。担任Journal of Power SourcesApplied EnergyEnergy Conversion and Management等多个能源与热力学期刊审稿人。


一、联系方式:

单位:中国科学技术大学热科学和能源工程系

地址:安徽省合肥市金寨路96

邮编:230026

电话:0551-63601102

电子邮件:pengtan@ustc.edu.cn

个人主页:先进电源研究组


二、个人经历

2008.8-2012.7 清华大学(学士) 热能工程系

2012.9-2016.8 香港科技大学(博士) 机械工程系

2016.9-2017.3 香港理工大学 助理研究员

2017.3-2018.9 香港理工大学 博士后研究员

2018.9至今 中国科学技术大学 特任研究员


三、获奖或荣誉

2014年香港科技大学工学院博士生奖学金

2012年清华大学优秀毕业论文

2011年清华大学科研训练一等奖


四、代表论文

  1. P. Tan, et al. Flexible Metal-Air Batteries: Recent Advances, Challenges, and Future Perspectives, Energy & Environmental Science, 2017, 10, 2056–2080. (IF: 30.067)

  2. P. Tan, et al. A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium-air batteries in ambient air, Energy & Environmental Science, 2016, 9, 1783–1793. (IF: 30.067)

  3. P. Tan, et al. Advances in modeling and simulation of Li-air batteries, Progress in Energy and Combustion Science, 2017, 62, 155–189. (IF: 25.242)

  4. P. Tan, et al. Recent advances in perovskite oxides as electrode materials for non-aqueous lithium-oxygen batteries, Advanced Energy Materials, 2017, 7, 1602674. (IF: 21.875)

  5. P. Tan, et al. In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries,Applied Catalysis B: Environmental, 2018, In press. (IF: 11.698)

  6. P. Tan, et al. A RuO2 nanoparticle-decorated buckypaper cathode for non-aqueous lithium-oxygen batteries, Journal of Materials Chemistry A, 2015, 3, 19042–19049. (IF: 9.931)

  7. P. Tan, et al. Co3O4 Nanosheets as Active Material for Hybrid Zn Batteries, Small, 2018, 14, 1800225. (IF: 9.598)

  8. P. Tan, et al. Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product, Applied Energy, 2017, 203, 254–266. (IF: 7.900)

  9. P. Tan, et al. Advances and challenges in lithium-air batteries, Applied Energy, 2017, 204, 780–806. (IF: 7.900)

  10. P. Tan, et al. Effects of moist air on the cycling performance of non-aqueous lithium-air batteries, Applied Energy, 2016, 182, 569–575. (IF: 7.900)

  11. P. Tan, et al. Prediction of the theoretical capacity of non-aqueous lithium-air batteries, Applied Energy, 2013, 4, 275–282. (IF: 7.900)

  12. P. Tan, et al. Carbon electrode with NiO and RuO2 nanoparticles improves the cycling life of non-aqueous lithium-oxygen batteries, Journal of Power Sources, 2016, 326, 303312. (IF: 6.945)

  13. P. Tan, et al. Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries, Journal of Power Sources, 2015, 278, 133140. (IF: 6.945)

  14. P. Tan, et al. Investigation on the electrode design of hybrid Zn-Co3O4/air batteries for performance improvements, Electrochimica Acta, 2018, 283, 1028–1036. (IF: 5.116)

  15. P. Tan, et al. A carbon powder-nanotube composite cathode for non-aqueous lithium-air batteries, Electrochimica Acta, 2014, 147, 1–8. (IF: 5.116)