谈 鹏

发布者:webmaster发布时间:2017-06-16浏览次数:10370

谈鹏,男,1990年生,博士学位,特任研究员。主要从事新型电池系统(离子电池、金属空气电池等)前沿课题的相关研究,包括热质传递与能量转化特性研究、高性能电池材料开发、新型电池结构设计与优化等。已在Energy & Environmental ScienceProgress in Energy and Combustion ScienceAdvanced Energy Materials等能源与热科学领域权威期刊发表SCI学术论文70篇,引用1400余次;申请发明专利11项。担任Journal of Power SourcesApplied EnergyEnergy Conversion and Management等多个能源与热科学领域期刊审稿人。



一、联系方式:

单位:中国科学技术大学热科学和能源工程系

地址:安徽省合肥市黄山路443号力学四楼218

邮编:230026

电话:0551-63601102

电子邮件:pengtan@ustc.edu.cn

个人主页:先进电源研究组



二、个人经历

2008.8-2012.7 清华大学 热能工程系 学士

2012.9-2016.8 香港科技大学 机械工程系 博士

2016.9-2018.9 香港理工大学 建筑及环境学院 博士后

2018.9至今 中国科学技术大学 热科学和能源工程系 特任研究员



三、获奖或荣誉

2019 仲英青年学者



四、代表论文

  1. P. Tan, et al. Flexible Metal-Air Batteries: Recent Advances, Challenges, and Future Perspectives, Energy & Environmental Science, 2017, 10, 2056–2080. (IF: 33.250)

  2. P. Tan, et al. A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium-air batteries in ambient air, Energy & Environmental Science, 2016, 9, 1783–1793. (IF: 33.250)

  3. P. Tan, et al. Advances in modeling and simulation of Li-air batteries, Progress in Energy and Combustion Science, 2017, 62, 155–189. (IF: 26.467)

  4. P. Tan, et al. Recent advances in perovskite oxides as electrode materials for non-aqueous lithium-oxygen batteries, Advanced Energy Materials, 2017, 7, 1602674. (IF: 24.884)

  5. P. Tan, et al. In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries, Applied Catalysis B: Environmental, 2019, 241, 104–112. (IF: 14.229)

  6. P. Tan, et al. Co3O4 Nanosheets as Active Material for Hybrid Zn Batteries, Small, 2018, 14, 1800225. (IF: 10.856)

  7. W. Shang, W. Yu, P. Tan*, et al. Achieving high energy density and efficiency through integration: progress in hybrid zinc batteries, Journal of Materials Chemistry A, 2019, 7, 15564–15574. (IF: 10.733)

  8. W. Yu, W. Shang, P. Tan*, et al., Toward a New Generation of Low Cost, Efficient, and Durable Metal-Air FlowBatteries,Journal of Materials Chemistry A, 2019, 7, 26744–26768. (IF: 10.733)

  9. P. Tan, et al. A RuO2 nanoparticle-decorated buckypaper cathode for non-aqueous lithium-oxygen batteries, Journal of Materials Chemistry A, 2015, 3, 19042–19049. (IF: 10.733)

  10. P. Tan, et al. Integration of Zn−Ag and Zn−Air Batteries: A Hybrid Battery with the Advantages of Both, ACS Applied Material & Interfaces, 2018, 10, 36873−36881. (IF: 8.456)

  11. P. Tan, et al. Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product, Applied Energy, 2017, 203, 254–266. (IF: 8.426)

  12. P. Tan, et al. Advances and challenges in lithium-air batteries, Applied Energy, 2017, 204, 780–806. (IF: 8.426)

  13. P. Tan, et al. Effects of moist air on the cycling performance of non-aqueous lithium-air batteries, Applied Energy, 2016, 182, 569–575. (IF: 8.426)

  14. P. Tan, et al. Prediction of the theoretical capacity of non-aqueous lithium-air batteries, Applied Energy, 2013, 4, 275–282. (IF: 8.426)

  15. W. Shang, W. Yu, P. Tan*, et al. A high-performance Zn battery based on self-assembled nanostructured NiCo2O4 electrode, Journal of Power Sources, 2019, 421, 6–13. (IF: 7.467)